A Measured Energy Transformation Application (META) For Long Beach Harbor, Site 2 Using A Statistical Relationship James P. McKinney and William D. Corson U.S. Army Corps of Engineers Engineering Research & Development Center Vicksburg, MS, 39180 August 28, 2003 This discussion compares prototype and computed spectral results for gages located at Long Beach Harbor, CA. Comparisons are made by examining the differences in the prototype and computed harbor total energy, E_t , very long period energy between 200 and 30 seconds, E_{200-30} , and energy spectrums. Spectral analysis allows the energy of the total wave record to be broken down into discrete frequency bands. Spectral results from an incident gage, LB8, located at Queens Gate and Long Beach Site 2, LB2, were used to calculate an energy transfer spectrum for LB2. Wave records were collected every 4 hours using subsurface pressure sensors. The sample rate for these sensors was $0.5\,H_z$ and the burst length was 8096 seconds. The analysis utilized the Welch, [1], spectral analysis method with 50% overlapping segments. Since the raw time series were obtained using sub-surface systems, a depth determined high frequency cutoff was applied. The averaged co-and quad-spectra from each analyzed record were used to calculate E_t , E_{200-30} , and energy spectrums. To provide a direct comparison of incident and transferred energy, a transfer coefficient spectrum, S_x , was calculated by dividing the transferred energy at each frequency by the corresponding incident energy, eqn.1. $$E_{xf} = \frac{E_{tf}}{E_{if}} \tag{1}$$ where E_{tf} is the energy per frequency transferred at LB2 and E_{if} is the incident energy per frequency from LB8. For this simple analysis, concurrent records when the LB8 $E_{200-30} > 5.0 \ cm^2$ were selected to compute S_x . Plots of the yearly S_x spectrums for 1998 - 2002 are provided. See figures 1 thru 5. An estimated energy spectrum, S_{est} at LB2 was calculated for each incident spectrum, S_i , using equation, eqn.2. | maintaining the data needed, and c
including suggestions for reducing | ompleting and reviewing the collect
this burden, to Washington Headqu
uld be aware that notwithstanding ar | o average 1 hour per response, inclu-
ion of information. Send comments :
arters Services, Directorate for Infor
ny other provision of law, no person | regarding this burden estimate
mation Operations and Reports | or any other aspect of the 1215 Jefferson Davis | is collection of information,
Highway, Suite 1204, Arlington | | |---|--|--|---|--|---|--| | 1. REPORT DATE 28 AUG 2003 2. REPORT TY | | 2. REPORT TYPE | | 3. DATES COVERED 00-08-2003 to 00-08-2003 | | | | 4. TITLE AND SUBTITLE | | | | 5a. CONTRACT NUMBER | | | | A Measured Energy Transformation Application (META) for Long
Beach Harbor, Site 2 Using a Statistical Relationship | | | | 5b. GRANT NUMBER | | | | | | | | 5c. PROGRAM ELEMENT NUMBER | | | | 6. AUTHOR(S) | | | | 5d. PROJECT NUMBER | | | | | | | | 5e. TASK NUMBER | | | | | | | | 5f. WORK UNIT NUMBER | | | | 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Army Engineer Research and Development Center, Waterways Experiment Station, 3909 Halls Ferry Road, Vicksburg, MS, 39180 | | | | 8. PERFORMING ORGANIZATION
REPORT NUMBER | | | | 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) | | | | 10. SPONSOR/MONITOR'S ACRONYM(S) | | | | | | | | 11. SPONSOR/MONITOR'S REPORT
NUMBER(S) | | | | 12. DISTRIBUTION/AVAIL Approved for publ | LABILITY STATEMENT
ic release; distributi | ion unlimited | | | | | | 13. SUPPLEMENTARY NO | OTES | | | | | | | 14. ABSTRACT | | | | | | | | 15. SUBJECT TERMS | | | | | | | | 16. SECURITY CLASSIFIC | 17. LIMITATION OF | 18. NUMBER | 19a. NAME OF | | | | | a. REPORT
unclassified | b. ABSTRACT unclassified | c. THIS PAGE
unclassified | ABSTRACT | OF PAGES 9 | RESPONSIBLE PERSON | | **Report Documentation Page** Form Approved OMB No. 0704-0188 $$S_{est} = S_x S_i \tag{2}$$ Figure 6 shows plots of prototype and estimated energy spectrums for LB2 for February 14 & 15, 2001. It is interesting that the part of the spectrums below 0.05 H_z are similar. E_{200-30} and E_t where calculated from the S_{est} for each record. Figure 7 show simultaneous plots of E_t and E_{200-30} for the prototype and estimated results. The scatter plots at the bottom of the page contain the same information. The overall average % error for E_{200-30} was 21.97% and was 45.79% for E_t . For more information, contact: James P. McKinney or William D. Corson, CEERD-HC-SO. ## **References** [1] P. D. Welch, "The Use of Fast Fourier Transform for the Estimation of Power Spectrum: A Method Based on Time Averaging Over Short, Modified Periodogams," *IEEE Transactions on Audio and Electroacoustics*, June 1967. Figure 1: Average transfer spectrum, S_x , when incident $E_{200-30}{>}5.0~cm^2$ for 1998. Figure 2: Average transfer spectrum, S_x , when incident $E_{200-30}{>}5.0~cm^2$ for 1999. Figure 3: Average transfer spectrum, S_x , when incident $E_{200-30}{>}5.0\ cm^2$ for 2000. Figure 4: Average transfer spectrum, S_x , when incident $E_{200-30}{>}5.0~cm^2$ for 2001. Figure 5: Average transfer spectrum, S_x , when incident $E_{200-30}{>}5.0~cm^2$ for 2002. Figure 6: Prototype and estimated energy spectrums for May 14 & 15, 2001. Long period energies are similar. Figure 7: Prototype and estimated total energy, E_t , and very long period energy, E_{200-30} .